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ABSTRACT 

A DETAILED finite element analysis of the monotonic loading of a stationary crack is performed under 
Mode I plane stress, small-scale yielding conditions. A small strain, J2 incremental plasticity theory is 
employed and both elastic-perfectly plastic and power law hardening materials are considered. Some issues 
such as the range of dominance of the asymptotic stress and deformation fields and the amount of non- 
proportional loading near the crack tip, which have received wide attention in the analogous plane strain 
problem, are examined. Special attention is devoted to the perfectly plastic idealization by performing a 
separate singular finite element analysis to clarify some details about the asymptotic stress and deformation 
fields. The full-field numerical solution is used to simulate synthetic (optical) caustic patterns at different 
distances from the tip. which are compared with experimental observations and with asymptotic analytical 
results. 

1. INTRODUCTION 

THE STRESS INTENSITY factor is a measure of the intensity of the stress and strain fields 
near a crack tip in linear elastic fracture mechanics. However, fracture in most 
structural materials, particularly low and intermediate strength metals, is often 
accompanied by plastic flow near the crack tip, invalidating the assumptions of linear 
elasticity theory. Under certain circumstances, the stress intensity factor can still be 
used to characterize the onset of crack growth, provided that the plastic zone is 
contained well within the region of dominance of the singular elastic field. This 
situation is often referred to as “small-scale yielding.” But when plastic flow takes 
place over large size scales, one is compelled to seek continuum solutions for crack 
problems within the context of an elastic-plastic theory. 

HUTCHINSON (1968a, b) and RICE and ROSENCREN (1968) performed the asymptotic 
analysis for stress and deformation fields near a monotonically loaded stationary 
crack tip in a power law hardening material obeying a deformation plasticity theory. 
The fact that the value of the J integral (RICE, 1968a) provides a measure of the 
intensity of the near-tip field in this asymptotic solution has prompted some inves- 
tigators (e.g., BECLEY and LANDES, 1972) to propose a criterion for the onset of crack 
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growth based on the attainment of a critical value for J. This proposal has been 
complemented by a wide range of experimental data (e.g., LANDES and BEGLEY, 1972). 

Tn order to characterize fracture initiation based on this single macroscopic par- 
ameter, it is imperative that the plastic singular fields of HUTCHINSON (1968a, b) and 
RICE and ROSENGREN (196X) should dominate over a length scale that is large as 
compared to the fracture process zone. In this region, microstructural processes such 
as void nucleation and growth, microcracking, etc. take place. The fracture process 
zone is often believed to coincide with the region near the tip, wherein finite strain 
effects are significant. In addition to the above issues, another important factor that 
has to be considered is the possibility of non-proportional loading near the tip, which 
would render the deformation plasticity theory (on which the analysis of HUTCHINSON 
(1968a, b) and RICE and RWENCREN (1968) is based) to be physically inappropriate. 

The above issues have been examined by several investigators through numerical 
methods predominantly under the tensile plane strain mode of fracture. Accurate 
finite element studies with crack tip elements making use of special interpolation 
functions to account for the plastic strain singularity were conducted by LEVY, 
MARCAL, OSTERGREN and RICE (197 1) and RICE and TRACEY ( 1973) for the perfectly 
plastic case and by TRACEY (1976) for hardening materials. These studies modelled 
Mode I plane strain, small-scale yielding conditions and employed an incremental 
plasticity theory. They confirmed the validity of the dominant fields of HUTCHINSON 
(I 968a, b) and RICE and ROSEWREN ( 1968) in a region quite close to the crack tip. 
MCMEEKING (1977) performed a finite element calculation to model crack tip blunting 
based on a finite strain incremental plasticity theory under plane strain, small-scale 
yielding conditions. He observed that finite strain effects become important only for 
distances from the tip of the order of two or three times the crack opening displacement 
S, (which will be defined in Section 4). Strong path dependence of the J integral was 
also noticed within this region. 

SHIH and GERMAN ( I98 I ) investigated the range of dominance of the plastic singular 
fields for a wide variety of specimen configurations and material properties from 
contained yielding to fully plastic conditions. They employed a small strain incremen- 
tal plasticity theory and confined their attention to Mode I plane strain. MCMEEKING 
and PARKS (1979) also investigated configuration dependence within the context of a 
finite strain theory similar to that employed by MCMEHKING (1977) under large scale 
yielding. Thus, substantial work under Mode I plane strain conditions has been 
performed to provide a better understanding of the mechanics of crack tip state and 
also to specify size requirements for specimens used in fracture toughness testing to 

ensure J dominance. 
However, very little information is available in the literature pertaining to the 

above issues under Mode I plane stress, despite its practical importance to structural 
problems. A preliminary numerical investigation was carried out by HII~TON and 
HUTCHINSON (1971) under plane stress, small- (and large-) scale yielding conditions 
in which the plastic singular fields were imposed in a small circle near the crack tip. 
The value of J or some other equivalent plastic intensity factor was determined along 
with the nodal displacements from the finite element solution. SHIH (1973) applied 
their method to study combined Mode I and Mode II fracture problems under both 
plane strain and plane stress. Both these studies employed a deformation plasticity 
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theory and considered power-hardening materials. Also, the validity of the asymptotic 
solution of HUTCHINSON (1968a, b) and RICE and ROSENGREN (1968) was assumed 
over a length scale, which was not known n priori, although this was contained well 
within the plastic zone in these numerical simulations. 

Some of the issues mentioned above, pertaining to the range of dominance of the 
asymptotic fields and the amount of non-proportional loading near the tip, which 
have received considerable attention in the plane strain problem, have not been 
examined in plane stress. Thus, detailed numerical work along the lines of RICE and 
TRACEY (1973) MCMEEKING (1977) and SHIH and GERMAN (1981) is required to 
firmly establish a conceptual understanding of fracture under plane stress conditions. 
This is usually more complex than in plane strain, primarily because the equations of 
plane stress plasticity are somewhat more involved (e.g.? HILL, 1983). 

In addition to the above considerations, a detailed numerical study of plane stress 
fracture is important because of the possibility of a direct comparison with optical 
experimental methods such as the method of caustics. This method, which has been 
employed to determine the stress intensity factor in linear elastic fracture problems 
(e.g., THEOCARIS and GDOUTOS, 1972), has recently been extended to applications in 
ductile fracture (ROSAKIS, MA and FREUND, 1983; ROSAKIS and FREUND, 1982). A 
knowledge of the range of dominance of the plastic singular fields is of primary 
importance to facilitate a proper interpretation of experimental data (ZEHNDER, 
ROSAKIS and NARASIMHAN, 1986). Also, information from full-field numerical solu- 
tions would be crucial in analysing the caustics obtained in regions outside the range 
of dominance of any particular asymptotic field. 

In this work, an elaborate finite element investigation, with a very ffne mesh 
elucidating the details near the crack tip, is undertaken to simulate Mode I plane 
stress, small-scale yielding conditions. No attempt has been made in this part of the 
work to incorporate the expected singularity in the strains by using special crack tip 
elements. Computations have been performed for materials obeying an incremental 
plasticity theory with no hardening and with a power-law hardening. In Section 2, 
the numerical formulation, finite element scheme, etc. are outlined. In Section 3, 
stationary crack tip fields under plane stress are reviewed. In Section 4, detailed results 
are presented for the plastic zones, stress and strain distributions, and crack opening 
displacement. Also, the path independence of the J integral is examined. 

In Section 5, caustic patterns are simulated from the numerical solution at a wide 
range of distances from the crack tip and are compared with experimental observations 
(ZEWNDER ef al.. 1986) and asymptotic results (ROSAKIS et al., 1983). In Section 6, an 
additional numerical analysis, employing singular elements near the crack tip, is 
performed for the perfectly plastic case in order to examine the asymptotic stress and 
deformation fields. The issue of sensitivity of the numerical results to the near-tip 
mesh design is thus investigated. It is found that the dominant strain field near the 
tip for perfect plasticity is completely different from the limit of the singular solution 
of HUTCHINSON (1968a, b) and RICE and ROSEN(;REN (1968) for materials with low 
hardening. On the other hand, the numerical results for the near-tip stress field are in 
good agreement with the slip line solution of HUTCHINSON (1968b). In the light of this 
observation, it is suggested that the configuration dependence of crack tip deformation 
should be investigated under plane stress in the‘spirit of SHIH and GERMAN (1981) 
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and ~~M~~K~~~ and PARKS (1979). Such an analysis could be colnpl~m~nt~d by 
experimental results based on caustics. 

2. NUMERICAL ANALYSIS 

Formulation 

The Mode I plane stress, small-scale yielding problem (RICE, 1968b) was modelled 
by considering a crack in a domain R, which was entirely represented by finite elements 
as shown in Figs. I(a) and (b). Only the upper half-plane was considered because of 
Mode I symmetry. All field quantities are referred to with respect to an orthonormal 
frame {e,, e2, e,) centered at the crack tip. The leading term in the displacements of 
the linear elastic asymptotic solution, 

(2. I) 

was specified as boundary conditions on the outermost boundary S of the domain.t 
The loading was applied through the Mode I stress intensity factor K,, which occurs 
as an amplitude factor in equation (2. I). 

The maximum extent of the plastic zone surrounding the crack tip was at all times 
within j’” of the radius of the outermost contour S, so that the small-scale yielding 
condition was preserved. All plastic deformation was confined within the active region 
shown in Fig. I (a), which has a total of 1704 four-noded elements and 3549 degrees 
of freedom. The large region surrounding this active mesh has a total of 40 rings with 
56 elements in each ring and remained elastic throughout the entire computation. The 
constant stiffness of this region was statically condensed using a ring-by-ring static 
condensation procedure that involved a partial forward Gauss reduction at each stage. 

The cutout in Fig. 1 (a) is a fine mesh region near the crack tip, which is shown in 
detail in Fig. l(b). This mesh was designed to have small rectangular elements parallel 
to the crack plane instead of being focused at the crack tip. No attempt has been 
made to incorporate the singularity of the plastic strains by using special crack tip 
elements in this analysis (see Section 6 and RICE and TRACEY, 1973). This was because 
the stress and strain fields at the end of the stationary load history were used as initial 
conditions for simulating stable crack extension, which will be reported elsewhere. 
The radius Rd of the active mesh and the radius of the outermost boundary S are 
about 385 times and 3400 times the size L of the smallest element near the crack tip. 
respectively. 

The Mode 1 symmetry conditions that are given by 

(2.2) 

f Throughout this paper. Greek subscripts will have the range I. 2. while Latin subscripts will take values 
1.2.3. 
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CRACK TIP 

(a) 

CRACK T’p-’ (b) 

Fm. I. Finite element mesh : (a) outer mesh; (b) fine mesh near the crack tip. 

were imposed by attaching stiff springs in the x2 direction to the nodes ahead of the 
crack tip. Traction-free conditions were imposed on the crackflank. 

The type of etement used was the four noded isoparametric quadrilateral, which 
was formed from four constant strain triangles with static condensation of the internal 
node. This element was suggested by NAGTEGAAL, PARKS and RICE (1974) to relieve 
artificial mesh-locking effects that occur under nearly incompressible conditions in 
plane strain. However, this problem does not arise in plane stress because there is a 
non-zero out-of-plane strain component cj3, which is determined in terms of the in- 
plane strain components eaB. 

Material idealization 

The materials that were numerically modelled were the elastic-perfectly plastic 
solids and isotropic power-hardening solids. A small strain incremental plasticity 
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theory was employed along with the Huber-Von Mises yield condition and the associ- 
ated flow rule. The Huber-Von Mises yield condition for isotropic hardening takes 
the form. 

.f‘(a, 2) = F(a) -62(F), (2.3) 

where F(a) = IS .S and ?’ = l(j6f;+) ‘12 dt is the accumulated equivalent plastic 
strain. In the above, S is the deviatoric stress tensor and a(.?) is defined by the 
following power hardening rule : 

(2.4) 

For the elastic-perfectly plastic case, 6 takes the constant value of cr,,, the yield stress 
in uniaxial tension. In equation (2.4), co is the yield strain in uniaxial tension. 

Within the context of the small strain flow theory of plasticity, the total strain rate 
tensor can be decomposed into elastic and plastic parts : 

i = i” fd”. (2.5) 

The stress rate tensor 6 is related to the elastic strain rate tensor 8’ through a constant, 
isotropic, positive definite elasticity tensor C as 

(j = Cd. (2.6) 

The plastic strain rate tensor dp is normal to the yield surface and the flow rule takes 
the form 

By using equations (2.3)-(2.7) the constitutive law for material currently experi- 
encing elasticcplastic deformation can be obtained as 

In the above, H = dc?ldF and can be obtained from (2.4) for hardening solids and is 
set equal to zero for perfect plasticity. 

In the present analysis, (2.3) and (2.8) were used along with the plane stress 
constraint, which requires 

rTJ1 = 0. (2.9) 

By using (2.9) in (2.8), an expression for t j33 can be obtained in terms of i,,. 
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A displacement based finite element method was employed in the analysis. The 
finite element equations were derived from the principle of virtual work. At a time 
(t+Ar) this takes the form 

s 
a(t+-At).&dA = T(t+At).&ds. (2.10) 

R s ?!R 

Here a(t+At) represents the Cauchy stress tensor, which satisfies equilibrium at 
time (f+Af) and T(t+At) the imposed traction vector on the boundary SR. 
Also, 6u represents the virtual displacement vector that vanishes on the part of the 
boundary where the displacements are specified and 6~ is the associated small strain 
tensor. 

After linearizing about the equilibrium configuration at time t and introducing the 
finite element approximation, the following incremental equilibrium equations are 
obtained in matrix form (e.g., BATHE, 1982) : 

K,AU = F(t+At) -P(t), (2.11) 

Here AU = U(t-tAt) -U(r) is the vector of nodal point displacement increments. 
Also, K, = j,B’DBdA is the tangent stiffness matrix corresponding to the con- 
figuration at time t, B, the strain displacement matrix (E = BU) and D, the material 
constitutive matrix. D will be equal to C for purely elastic response and C* for elastic- 
plastic material response. F(t+ At) is the vector of externally applied nodal point 
loads at time (t+Aht) and P(t) = fRBra(t)dA is the vector of nodal point forces 
equivalent to the element stresses at time t. 

In the present analysis, time is only a convenient variable that represents different 
levels of load intensities. An iterative Newton-Raphson procedure (e.g., BATHE and 
CIMENTO, 1980; BATHE, 1982) was employed in the solution of the incremental equi- 
librium equations (2.11). This method is summarized in the Appendix. 

Stress computation 

As was observed above, the finite element scheme solves the dispIacement equations 
of ~quiI~brium in an incremental fashion. Hence, the constitutive laws presented earlier 
that deal with stress and strain rates were used approximately to relate small finite 
increments in stresses and strains. An explicit integration procedure also known 
as the Tangential Predictor-Radial Return method was employed to integrate the 
incremental stress-strain law. As shown by SCHREYER, KULAK and KRAMER (1979), 

this method, if used with subincrementation (as in the present analysis), is very 
accurate for plane stress conditions. 

It is important to recall that the requirement of plane stress imposes a constraint 
for the out-of-plane strain increment As 33 in terms of the in-plane strain increments 
AsE8. Due to this constraint, it is more convenient to perform computations with stress 
and strain tensors instead of with their deviatoric parts as is normally done in plane 
strain. The method of stress computation is outlined in the Appendix. 
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As noted earlier, the loading was applied through the Mode I stress intensity factor 
K,, which enters the far-field displacement boundary condition (2.1). An initial load 
step was performed in which K, was small enough to ensure that all the elements 
remained elastic. K, was then scaled to cause incipient yielding in the element nearest 
to the crack tip. 

Subsequent load steps were performed by increasing K, by 510% of the incipient 
value at a time and iterating for convergence to equilibrium. Each load step required 
typically 334 iterations before converging to an accepted equilibrium configuration. 
Yielding was continued till the plastic zone surrounding the crack tip had a maximum 
extent of about 50 or 100 times the smallest element size L in order to guarantee 
sufficient resolution near the crack tip. 

3. STATIONARY CRACK TIP FIELDS 

Power-hardening solids 

HUTCHINSON (1968a, b) and RICE and ROSENGREN (1968) investigated the asymptotic stress 
and strain fields near a monotonically loaded stationary crack tip in an elastic-plastic solid. 
The dominant singular term of their analysis will be referred to as HRR in the sequel. In their 
work, a J2 deformation plasticity theory and a power-law hardening idealization similar to 
(2.4) were assumed. 

The HRR analysis employs a small strain formulation and assumes a separable form in 
polar coordinates r and 0, for the dominant term of the solution, to obtain 

(3.1) 

In (3.1) o,, and Ed are the yield stress and strain in uniaxial tension and n is the hardening 
exponent. The angular factors a,,(@, n) and E; (8, n) depend on the mode of loading and on the 
hardening exponent. The dimensionless quantity I,,, which is defined in HUTCHINSON (1968a), 
decreases from 5 for n = 1 to about 2.6 for n ---t so under plane stress. J in (3. I) is the value of 
the Jintegral of RICE (1968a). 

For plane deformations, the J integral is defined for any path of integration I by 

J= (WV,-v,a,,u,,,)ds, 
3 r 

(3.2) 

where W is the local stress work density, v, a unit vector normal to I and u, is a particle 
displacement vector. For our purposes, I will denote an open contour surrounding the crack 
tip. The integral (3.2) has the well-known property of path independence for a wide class of 
solids, including materials that obey the deformation theory of plasticity. Under small-scale 
yielding conditions, J can be evaluated from contours taken in the far-field (K dominated) 
elastic region as, 

for plane stress. It is important to note that J enters (3.1) as an amplitude factor and hence 
provides a unique measure for characterizing fracture initiation at the crack tip. 
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The main limitation of the HRR analysis is the unknown range of dominance (e.g., with 
respect to maximum extent of the plastic zone) of the singular solution. This issue is important 
since this range of dominance should be large as compared with the fracture process zone and 
the region near the crack tip where the small strain plasticity theory breaks down. From the 
experimental standpoint, this information is crucial in the proper interpretation of experimental 
data based on optical measurements (ZEHNDER et al., 1986). 

Also, the discrepancy between the deformation theory and the more appropriate incremental 
theory of plasticity has to be assessed from the context of crack tip fields. In addition, another 
serious limitation that will be pointed out later occurs when the limit n + cc is taken. This is 
associated with the change in nature of the governing equations in the limit as the perfect 
plasticity case is approached. 

The above issues will be investigated from the point of view of the plane stress full-field 
numerical solution presented here. This solution simulates small-scale yielding conditions and 
employs an incremental plasticity theory. 

Perfectly plastic solids : stress field 

For perfectly plastic solids, the following important assumptions regarding the asymptotic 
nature of the stress field are usually made : 

at,@@) - a;(e) 1 

It is important to bear in mind that the field equations for perfect plasticity may be hyperbolic,t 
while those for hardening solids are elliptic. 

Equation (3.4) can be used to obtain asymptotic forms of equilibrium equations and the 
Von Mises yield condition (RICE and TRACEY, 1973). These can be employed to show that only 
two types of asymptotic plastic sectors can exist near the crack tip. These are as follows for 
plane stress. 

(i) Centeredfan sector 

In this sector, radial lines are stress characteristics and the asymptotic stress field has the 
following form, 

a;,(e) = r,cos(e-f?") 

a;,(@ = ~T,COS(&~,) 

a$(@) = 7. sin(Q-0,) I 

, (3.5) 

where BO is an arbitrary constant angle and 7. is the yield stress in pure shear. 

(ii) Constant stress sector 

In this sector, the Cartesian components of the stresses are constant, 

G(o) = b,,. (3.6) 

t For perfectly plastic solids under plane stress, the governing equations for the stresses could be 
hyperbolic, parabolic or elliptic (e.g., HILL, 1983). 
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e,= 79.70; e2’151.40 

FIG. 2. Analytical asymptotic field near a stationary crack tip in a perfectly plastic solid under plane stress 
represented by stress characteristics. 

The constants h,,j are related by the yield condition. Straight lines along which the direct 
components of the stress deviator S;, vanish arc stress characteristics (HILL, 1983). 

HUTCHINSON (1968b) assembled a solution for the near-tip field comprising of a combination 
of the above sectors as shown in Fig. 2. The region marked A is a centered fan sector extending 
from 0 = 0’ to 0 = 79.7”, while the regions B and C are two constant stress sectors, which 
occupy the angles from 0 = 79.7’ to 0 = 180”. The stresses in Sector A are as given by (3.5) 
with 0, = 0. In particular, it should be noted that the stresses ahead of the crack tip (0 = 0) 
are given by 

rr,, = 7” a’;> = 21” fl;? =o. (3.7) 

There is also a discontinuity in the grr stress component between the two constant stress sectors 
B and C, which is admissible as long as the crack remains stationary. 

Pe@ctly plustic solids : defhnntionjields 

As noted by RICE (1968a) in the case of plane strain, singularities in strains result when slip 
lines focus at a point as in centered fan sectors. The displacements U, (or the rates ti, in a proper 
incremental formulation (HILL, 1983)) are functions of angle 0 as the crack tip is approached 
within centered fan sectors resulting in a discrctc crack opening displacement at the tip. The 
following assumptions are often made (RICE and TRACEY, 1973) about the displacements u, (or 
the rates ti, ) within centered fan sectors, 

(3.8) 

Since radial lines are stress characteristics in the fan, EC: is nonsingular while E& (or &) and 
EC, (or is,) are singular as 0( 1 /u) when the crack tip is approached within the fan. Thus, it is 
possible to write 

(3.9) 

within fan sectors. The angular factors g&(O) and g$,(O) are non-uniqur and cannot be deter- 
mined from a local analysis. They depend on a solution to the entire boundary value problem. 
However, from the flow rule, 
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the following relation can be obtained between & and SfO, 
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(3.10) 

(3.11) 

provided S,, # 0. Although this equation strictly applies for the strain rates in an incremental 
theory, it can be used to relate the total strains if the stresses remained constant at a material 
point from the time it was enveloped by the plastic zone. Hence, it is expected to hold 
approximately between the asymptotic angular strain factors $&(0) and $0(Q). 

The dominant HRR solution for the stresses (3.1) approaches the limiting slipline dis- 
tribution of perfect plasticity as the hardening exponent n + co. But as has been observed by 
LEVY et al. (1971) and RICE and TRACEY (1973) for plane strain, one cannot in general expect 
the HRR singular solution for the strains as n + co to be the dominant solution for perfect 
plasticity because of the non-uniqueness noted earlier. 

On the other hand, the strain components are (in general) non-singular in the constant stress 
sectors and the same displacement results if the crack tip is approached along different radial 
lines in these sectors. 

An expression for the near-tip J integral can be obtained from the asymptotic form (3.9) 
following plane strain analysis of RICE (1968a). Taking the contour r in (3.2) to be a circle of 
radius Y, one can write (3.2) as 

s 
n J= r {Wcose-a,,[&,,COSO-(&,O -o)sinQ]-rr,,[(~,~+~)cosO--s~~sin0]}dQ. (3.12) 
--n 

In the above equation, w is the rotation, and 

1 
w= -.s,o+o - , 0 r -+ 0. 

r 

Also, 

1 
& r, =o - 0 Y 

w= wp+o 1 

I 0 

, r-0, 

r 

(3.13) 

(3.14) 

where 

Taking r--t 0 in (3.12) and using the asymptotic equations (3.5), (3.9), (3.13) and (3.14), one 
obtains 

JllP = ~ ( >s 2 o@* {2[(~~~)2+(Q)2]1~2cose+~~0sin2e+~~0sinze} de, (3.15) 

where B* is the maximum angular extent of the fan. 
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4. RESULTS AND DISCUSSION 

The computations were performed for two levels of power hardening, n = 5 and 9 
and also for the elastic-perfectly plastic case, which is referred to as n = cc in the 
following discussion of the results. It should, however, be noted that the elastic- 
perfectly plastic calculation was performed with H = dc?/dEp = 0 in the constitutive 
equation (2.8). The ratio of the Young’s modulus to the yield stress in pure shear 
(E/z,) was taken as 1400 for the two cases of power-hardening and as 350 for the 
elastic-perfectly plastic calculation. The Poisson’s ratio was taken as 0.3 for all cases. 

Plastic zones 

The plastic zone surrounding the crack tip is shown in Fig. 3 for the three values 
of hardening exponent n. The crack tip is situated at the origin of the coordinate axes 
that have been made dimensionless by the parameter (K,/a,)‘. This parameter has 
the unit of length and also contains a measure of the far-field loading. Hence, the size 
of the plastic zone is expected to scale with respect to this parameter under small- 
scale yielding conditions. A point in the figure represents a yielded integration station 
within an element. It should be noted that the plastic zone becomes less rounded and 
spreads more ahead of the crack tip with decreasing hardening (increasing n). 

These plastic zones agree well in shape but are slightly smaller in size as compared 
with the results of SHIH (1973), who employed a deformation plasticity theory and 
used a singular element near the crack tip. The maximum extent of the plastic zone 
that occurs ahead of the crack tip (0 = 0) is about r,, = 0.22(K,/~,,)~, 0.25(K,/o,)* and 
0.29(K,/a,)’ for n = 5, 9 and x, respectively. For comparison, Shih’s calculation 
indicates an rp of about 0.32(K,/o,)’ for n = 25, and TADA, PARIS and IRWIN (1973) 

report r,, = (l/rc)(K,/o,,) for n = cc based on an approximate calculation. The slightly 
larger size of the plastic zone obtained by Shih could be due to the imposition of the 
HRR singular solution in a small circle around the crack tip in his analysis. The 
present computation introduces no such a priori constraint. 

In Fig. 4 the numerically obtained plastic zone for n = 9 is compared with the visual 
evidence of permanent plastic deformation observed on the surface of a thin compact 
tension specimen (ZEHNDER et ul., 1986). The material used in this experiment was a 
4340 carbon steel with a power-hardening exponent of 9 in uniaxial tension. The 
experimental and numerical plastic zones agree well in shape and also in size when 
the load levels in the experiment were small and there were no boundary interaction 
effects (contained yielding). 

Radial distribution qf’stresses 

The distribution of the normalized opening stress, CT~~/Z~, along the x1 axis ahead 
of the crack tip and within the plastic zone is shown in Fig. 5. The centroidal values 
of stress in the row of elements ahead of the crack tip have been used in making this 
plot. Advantage has again been taken of the self-similarity noted earlier, with the 
distance from the crack tip being measured in terms of the dimensionless variable 
x, /(K, /cT(,)~. The finite element results agree to within 1% with the HRR asymptotic 
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(KIhO)* 
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0.10 
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( K I /roj2 

XI 

( K I /‘co)2 

FIG. 3. Plastic zones surrounding the crack tip for three levels of hardening: n = 5, 9 and z 
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stress distribution (3.1), which is shown by the solid lines in the figure, in the range 
0 < x, < 0.08(K,joo)‘. For example, at .Y, = 0.018(&/(~,)‘, the ratio of the finite 
element to the HRR asymptotic stress is 3.13/3.14. 2.6612.67 and I .999/2.0 for M = 5, 
9 and X, respectively. 

The values given by the HRR distribution for CJ ?I are higher than their finite element 
counterparts by about 8% at the elastic- plastic boundary. This is in marked contrast 
to the corresponding result in plane strain (e.g., TRACEY, 1976), where strong deviation 
of the finite element solution from the HRR distribution was reported even for small 
distances from the crack tip. Also, it should be observed from Fig. 5 that there is only 
slight dependence of (T?? on tz for X, > O.l5(K,/o,,)‘. The finite element values differ 
by less than 10% (with respect to n) in this range. 

The radial variation of all the normalized stress components ahead of the crack tip 
within the plastic zone for the elastic--perfectly plastic case is shown in Fig. 6. The 
finite element values near the crack tip are in excellent agreement with the asymptotic 
slipline solution of HUTCHINSON (Fig. 2). At .Y, = O.O1(K,/a,j)‘, o,, and cr?? are 0.98 
z,, and 1.999 rO_ respectively, which compares very closely with the values of T” and 
2t,, given by the slipline solution (equation (3.7)). Also, Fig. 6 indicates that the G,, 
stress component has a strong radial variation ahead of the crack tip, with a value at 
the elasticcplastic boundary of about 1.40 z,~. This suggests curving of the leading 
boundary of the fan at moderate distances from the tip. 

The plane-stress Huber-Von Mises yield surface can be represented by an ellipse in 
principal stress space in the following parametric form (HILL, 1983) : 

(4.1) 

(i’ = tr)(t'. 8) J 

For 0, > g2, the angle UJ varies in the range 0 < (II < 71. The governing equations for 
the stresses are hyperbolic if 7c/‘6 < (11 < 57c/6, parabolic if cc) = n/6 or 5n/6, and 
elliptic if 0 < cc) < 7c/6 or 5rr/6 < (IJ < 7~. The value of O(Y --+ 0,O) corresponding to the 
asymptotic stresses (3.7) is ~16, whereas the stresses at the elasticcplastic boundary 
ahead of the crack tip give (u(T;,, 0) 2 n/ 12. Thus, while the stress state ahead of the 
crack is parabolic near the tip, it appears to be elliptic at the elastic-plastic boundary. 

It is important from the viewpoint of optical experimental methods (such as caus- 
tics) to determine the effect of the crack tip plastic zone on the stress and deformation 
fields in the surrounding elastic region, in order to properly interpret the experimental 
data. To examine this effect, the radial distribution of stresses in the ray ahead of the 
crack tip is shown on an expanded scale in Fig. 7 for the two levels of hardening, 
n = 5 and 9. The stresses given by the singular elastic solution (K, field) are shown 
for comparison by the solid line in the figure. It is found that the cr12 stress component 
obtained from the numerical solution is higher than that given by the singular elastic 
field at the elastic -plastic boundary (r = T,,) by more than 30%. However, the stress 
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FIG. 6. Radial stress distribution ahead of the crack tip for the perfectly plastic case. 
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FK;. 7. Comparison of’ the radial stress distribution ahead of the tip ils given by the X, field (solid line) 
with the finite element solution for materials with (a) II = 5 and (b) II = 9. 

distribution undergoes a rapid transition outside the plastic zone and differs from the 
K, field by less than 8% for f > I .St-,,. Also, the stress distribution in the surrounding 
elastic region seems to be quite insensiti~/e to the hardening level. 

Radid disrn’hution of p fmric s f r&m 

The radial variation of the normalized plastic strains &/co and S&/L+, with respect 
to normalized distance ahead of the crack tip is shown in Fig. 8 for the two levels of 
power hardening. The HRR solution for the asymptotic strain distribution (equation 
(3.1)) is shown by the solid lines in the figure. The finite element solution, although 
slightly smaller than the HRR distribution near the crack tip, appears to indicate the 
correct singular behaviour in the range I’ < 0.3r,,. It should be recalled that a very 
detailed mesh was used near the crack tip (Fig. l(b)), and that the plastic zone was 
quite large as compared with the smallest element size (at lcast 50 times) at the stage 
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FIG. 8. Radial variation of the plastic strains ahead of the crack tip for materials with (a) n = 5 and 
(b) n = 9 and comparison with HRR solution (solid lines). 

when these results were taken. These factors compensate to some extent for the 
incorrect modelling of the singularity (3.1) by our using linear shape functions for the 
crack tip elements. 

The radial variation of the normalized plastic strains ahead of the crack tip for the 
elastic-perfectly plastic case is shown in Fig. 9. The solid line in the figure is the limit 
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FIG. 9. Radial variation of plastic strains ahead of tip for perfectly plastic case. A vast discrepancy with 
the HRR singular solution for large ~2 (SHIH. 1973 : ROSAKIS rt cd.. 1983) is observed. 

of the HRR dominant singular solution for cs2 /e, for large ~1, which is given by (SHIH, 

1973 ; ROSAKIS e: al., 1983). 

& 

C” 1 
HRR 

z 
0.9F,, 

n-x Y ’ 
0 = 0, r + 0, (4.2) 

where 

The finite element solution for the strains seems to indicate the correct l/r variation 
near the crack tip (r < O.O4(K,/o,)‘) but is about 3.3 times the values given by (4.2). 

As has already been noted in Section 3, the HRR singular strain solution as 
y1+ co, cannot (in general) be expected to provide the dominant solution for perfect 
plasticity because of the non-uniqueness in strains associated with the non-hardening 
case. This discrepancy has also been observed in Mode I plane strain by LEVY et al. 

(1971) and RICE and TRACEY (1973). In this connection, it should also be mentioned 
that KNOWLES (1977), in working on the finite anti-plane shear field near a crack tip 
in an incompressible elastic solid, with a similar power law behaviour has made an 
important observation. He found that the first- and second-order terms in the asymp- 
totic expansion for the displacements tend to become of equal importance, as one 
approaches the equivalent of the “perfectly plastic” case in such solids. This raises 
the question of whether the limit as n + x of the most singular term in the asymptotic 
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FIG. IO. Normalized crack opening profiles for several values of hardening. 

solution can be considered separately, without examining the limiting behaviour of 
the higher-order terms of the expansion. 

In order to resolve the issue further, a separate finite element calculation for the 
perfectly plastic case was performed under plane stress, small-scale yielding conditions 
using a focusing mesh with singular elements near the crack tip, similar to the work 
of RICE and TRACEY (1973). The results of this investigation will be reported in Section 
6. Finally, it should be noted that the region ahead of the crack tip, wherein the l/r 
variation of the plastic strains was observed (r < O.O4(K,/a,)‘), corresponds to the 
region of dominance of the asymptotic stress held (see Fig. 6). Beyond this range, the 
front boundary of the fan may tend to curve and the I/r variation for the plastic 
strains may no longer be valid (RICE, 1968a, b). 

Crack opening displacement 

The opening displacement between the crack faces as a function of position along 
the crack flank is shown in Fig. IO in the ~londimensional form, ~~(~/~~) versus 
.~,~(~~~~~)~, for the three cases, n = 5. 9 and XI. The linear elastic solution cor- 
responding to n = 1 is also plotted for comparison. J in this plot is the far-held value 
given by (3.3). From the figure, it can be observed that the amount of blunting at the 
crack tip increases with decreasing hardening (or increasing n). There is a discrete 
opening displacement at the tip for the perfectly plastic idealization because of reasons 
stated in Section 3. 

On the other hand, the near-tip crack opening profile for the hardening cases, 
computed on the basis of the HRR analysis, has the form (HUTCHINSON, 1968a ; RICE 
and ROSENGREN, 1968), 

6 = 2u,(v,n) - (2Y(Sf)“)‘ffi+‘, r+O. (4.3) 

In this expression, S,, which can be written as 
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(4.4) 

can be approximately interpreted as the opening distance between the intercept of 
two 45 lines drawn back from the crack tip to the deformed profile. This definition 
was suggested by TRAVEY (1976) as a measure of the crack tip displacement for a 
hardening material, since 60. = 0) = 0 in this case, as can be seen from (4.3). SHIH 
(1981) has obtained the values for c?,(t:,,.77) from the HRR solution for both plane 
stress and plane strain. It is found (SHIH. 1981) that & is strongly dependent on n and 
weakly on E,,. Also, as M + r , &, becomes independent of I:(, and takes the value of 
I .O for plane stress. 

From the present finite element calculation, the value of Gr/(J/ao) was obtained by 
extrapolating the near-tip crack profile to Y = 0 for the non-hardening case and by 
fitting the form (4.3) to the near-tip profile for the hardening cases. SHIH (1981) has 
also computed the values of G,j(J/oo) for several values of 17 from his finite clement 
solution (SHIH. 1973). which as noted earlier employed a deformation plasticity 

theory. These results are summarized in the following table. 

ci-,,,E I7 = 5 I7 = 9 17 = 25 n = 3L’ 

HRR 0.0012 0.40 0.63 0.89 1.0* 
Present solution 0.0012 0.37 0.57 0.85 
SHIH (1973. 1981) 0.38 0.86 

* (extrapolated) 

The slightly smaller values for Cr,/(J,loo) obtained by the present solution. as com- 
pared to HRR for the hardening cases, can be accounted partially by some discrepancy 
between flow theory and deformation theory as explained below. But the difference 
between the present perfect plasticity calculation and the HRR non-hardening limit 
is because the latter is unable to provide complete information regarding the most 
singular term for the strains in the asymptotic solution for perfect plasticity, as 
described above. This discrepancy has also been observed in plane strain. The pub- 
lished numerical results (e.g., SHIH, I98 1) for G,/(J:‘ao) under plane strain, small-scale 
yielding conditions for the perfectly plastic case range from 0.63 to 0.66, whereas the 
HRR non-hardening limit is 0.78. 

In order to assess the difference between the incremental formulation and the 
deformation plasticity theory, the path independence of the J integral was checked. 
The J integral (3.2) was computed for the hardening materials along several contours 
surrounding the crack tip, which passed through the centroids of’the elements. The 
near-tip contours enclosing the crack tip were rectangular, while the far-field contours 
were circular, in keeping with the structure of the mesh (Fig. I). The integrand in 
(3.2) was calculated, using the averaged values of stresses and strains at the centroids 
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of the elements lying in the contour path, and the integration was carried out numeri- 
cally using Gauss quadrature. It was found that very near the crack tip (r < O.O4r,)) 
there was a small amount of path dependence. However, after some distance away 
from the crack tip, the calculated J value was virtually indistinguishable from the 
remotely applied value (3.3). 

For a contour with an average radius i; = 0.01 ~(K,/cJ,,)~, the ratio of the calculated 
J value to the remotely applied J was 0.96 and 0.95 for n = 5 and 9, respectively. For 
contours with average radius r > 0.05(K,/0,)~, the calculated Jvalue was smaller than 
the applied J by less than 1%. While the 5% difference for the near-tip contours is 
within the realm of errors in the discretization procedure and in the numerical inte- 
gration of (3.2), it also suggests small amounts of non-proportional loading experi- 
enced by a material particle from the time it was enveloped by the plastic zone. For 
the elastic--perfectly plastic material, our accurate numerical solution of Section 6 was 
used to estimate the near-tip J integral, and its discussion will be deferred till then. 

In order to further check for discrepancy between the two plasticity theories, 
c<,/E(, was calculated for the hardening materials at the centroids in the row of 
elements ahead of the crack tip by substituting the averaged stresses in these elements 
into the expression given by the J2 deformation theory. The plastic strain given 
by the Jz deformation theory was about 5% higher at r = 0.012(K,/a,)2 than the 
corresponding value given by the incremental formulation that was reported earlier 
(Fig. 8). This difference progressively diminished as the distance from the crack tip 
increased, and it was less than 1% for r > 0.1 (K,/o,,)“. 

5. NUMERICAL SIMULATION OF CAUSTKS 

Introduction 

The optical experimental method of caustics has been applied to the study of linear 
elastic fracture problems and to the direct measurement of the stress intensity factors 
(e.g., THEOCARIS and GDOUTOS, 1972; ROSAKIS and ZEHNDER, 1985). This method 
was recently extended to the measurement of the Jintegral in ductile fracture (ROSAKIS 

et al., 1983; ROSAKIS and FREUND, 1982) on the basis of the validity of the plane 
stress, HRR asymptotic solution. 

Under conditions of small-scale yielding, the singular elastic field dominates well 
outside the plastic zone. Inside the plastic zone, very near the crack tip, the HRR field 
dominates. In the transition region between these two fields, no analytical solution is 
available. This limits the applicability of caustics, and the conditions under which the 
results reported by ROSAKIS pt al. (1983) and ROSAKIS and FREUND (1982) are valid, 
are uncertain. Also, errors may be caused in the measurement of K, based on the 
caustics obtained from the elastic region surrounding the plastic zone. This is because 
the crack tip plastic zone affects the caustic patterns, and an analysis based on the K, 
field may be erroneous. 

In this section. the full-field numerical solution under small-scale yielding is used 
to generate simulated caustic patterns. The numerical caustics are compared with the 
corresponding patterns observed from experiments (ZEHNDER et al., 1986). The 
analysis of caustics based on the numerical results is not limited by the assumption 



FIG. I I, Formation of caustic due IO reflection ol‘light l’rom it polished, defbrmed specimen surfax. 

of the validity of any particular asymptotic field. Finally, qualitative and quantitative 
comparisons of the simulated caustics, obtained at various distances from the crack 
tip, are made with the corresponding results based on the near-tip HRR analysis and 
the remotely applied K, field. 

Consider a set of parallel light rays normally incident on a planar. reflective speci- 
men that has been deformed by tensile loading. Due to the deformed shape of the 
specimen. an envelope in space called the “caustic surface” is formed by the virtual 
extension of the reflected light rays (Fig. I I). The intersection of this surface with a 
plane located at a distance :,) behind the specimen is called the “caustic curve” and it 
bounds I dark region called the “shadow spot”. 

Let (_Y,, x,) be a coordinate system on the specimen surface centered at the crack 
tip and (X,.Xl), a system translated by a distance zci behind the specimen surfitcc. 
Then the mapping of a point (.Y,,_Y~) on the specimen surface to a point (A’,, A’:,) on 
the plane at ;ij due to reflection of a light ray may be described by (ROSAUS and 
ZEHNDER, 1985) 

The locus of points on the specimen surface at which the Jacobian determinant of the 
mapping (5. I) vanishes is called the “initial curve”. While points on the initial curve 
map onto the caustic curve, all points both inside and outside the initial curve map 
outside the caustic. The position of the initial curve may be varied by changing 2,). 

For a stationary crack under small-scale yielding conditions, if the initial curve is 
chosen to fall well outside the plastic zone and within the region of validity of the K, 
field (large values of z~)), then the resulting caustic curve will be an epicycloid (Fig. 
12(a)). In such a case, K, is related to the caustic diameter D (which is the m~ximtim 
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width of the caustic in the X, direction) by (R~SAKIS and ZEHNDER, 1985), 

K = ED”’ 
I 

10.7z,vh ’ (5.2) 

where h is the specimen thickness. The initial curve is circular and its radius r0 is given 

by 

Y(, = 0.316D. (5.3) 

On the other hand, if the initial curve is chosen to fall well inside the plastic zone 
and within the region of dominance of the HRR field (very small values of -_,)), then 
its shape as deduced by ROSAKIS et al. (1983) will no longer be circular. In such a 
case, the radius r,, of the point on the initial curve that maps to the maximum value 
of X2 on the caustic curve is given by 

r 0 = 0.385 D, (5.4) 

for a hardening exponent II of 9. Also, the value of the J integral may be obtained 
from the caustic diameter D as (ROSAKIS et al., 1983). 

J = S,, 2 [g “7 h]‘” + “‘I D”“+ 2)‘,,T 

0 0 

(5.5) 

where S, is a numerical factor dependent on II. Caustic curves thus obtained from the 
HRR field for several values of the hardening exponent are given by ROSAKIS et al. 

(1983). A typical caustic for n = 9 is shown in Fig. 12(b). 

Results and discussion 

The discrete values of the out-of-plane displacement Us obtained from the numerical 
solution at the centroids of the elements were smoothed usmg a least-squares finite 
element scheme as advocated by HINTON and CAMPBELL (1974). The surface thus 
generated is shown in Fig. I3 for a material with a hardening exponent of 9. Caustic 
patterns were simulated by mapping light rays point by point from this smoothed 
surface using (5.1) for different values of ro. 

The sequence of caustics simulated from the finite element solution for different 
values of -,) is shown in Fig. 14 for a material with n = 9. The parameter r,,;r,, in the 
figure is the ratio of the initial curve size to the maximum plastic zone extent. The 
initial curve size r. was estimated approximately by using (5.4) for caustics from 
within the plastic zone and by (5.3) for caustics from dutside the plastic zone. It is 
seen from the figure that for v,,;‘~,, = 0.19, the simulated caustic agrees in shape with 
the caustic predicted by the HRR field, which is shown in Fig. 12(b). When r,,/~,, = I .3, 
the numerically simulated caustic, Fig. 14(f), agrees with the caustic predicted using 
the elastic, K, field (Fig. 12(a)). 

A sequence of photographs of caustics (ZEHWER et ul., 1986) obtained from the 
tensile loading of a thin compact tension specimen of 4340 carbon steel is shown in 
Fig. 15. The experimental details, specimen dimensions. etc. are described by ZEHNDER 
pt rrl. (1986). On comparing Figs I4 and I5 it is seen that in both casts there is a 
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FIG. 13. Smoothed out-of-plane displacement field for n = 9 

transition from an “HRR caustic” to an “elastic caustic” as r,/r, goes from 0.19 to 
1.4. The transition away from the HRR caustic appears to take place slightly sooner 
in the numerical model (around r,/r,, = 0.3) than in the experiment (around 
t-,/r,, = 0.35). However, the general trend is similar in both cases. 

It is found that both the numerical and experimental caustics retain the shape 
predicted by the K, field even for r,/r,, as small as 1.0. Thus, the effect of the plastic 
zone cannot be judged by mere observation of the caustic shape. The reason for the 
invariance in shape of the caustics is explained by examining the angular variation of 
the sum (a,, +cS2), of the direct stress components (as given by the numerical 
solution), at different distances outside the plastic zone as shown in Fig. 16. It is seen 
that the sum (a,, +oz2) generally follows the angular distribution given by the K, 
field, which is shown by the solid line in the figure even for r,/r, as small as 1.2. 
However, the individual stress components show more deviation from those of the K, 
field for small values of r,,/r,,. This observation is important, since the caustic shape 
depends on the angular variation of the out-of-plane displacement component Us, 
which in the elastic region, is proportional to (a,, +oz2) under plane stress. Thus, it 
is not surprising that the caustic shape resembles the “elastic caustic” for ro/r, as 
small as 1.0. 

The numerical caustics were simulated for a fixed value of K, (or the far-field value 
of J as given by (3.3)) by varying z0 in the optical mapping (5.1). The relationship 
between the diameter D of the simulated caustics and the remotely applied J value is 
shown in non-dimensional form in Fig. 17. The inverse of the abscissa in the figure is 
an indication of the initial curve size or the distance from the crack tip at which the 
information about the deformation field is being scrutinized. Thus a very small 
abscissa value (large Z” or small J) implies that the initial curve is far away from the 
tip. A very large abscissa value, on the other hand, implies that the curve is very near 
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the tip, probably within the range of dominance of the HRR field. The bars on the 
numerical results indicate the uncertainty in determining the initial curve due to 
discretization of the finite elements. 

The solid line in the figure represents the variation of caustic size in the K, dominated 
region as given by (5.2) with 1’ = 0.3. The dashed line gives the relationship for the 
caustics from the HRR-dominated region (5.5). As can be observed from this figure, 
the numerical results approach the elastic relation (5.2) for small abscissa values and 
the relation (5.5) obtained from the HRR solution for large values of the abscissa. In 
the intermediate region there is a transition from one distribution to the other. 

6. SINGULAR FINITE ELXMENT ANALYSIS 

In this section, a detailed investigation of the perfectly plastic case will be presented, 
with the view of examining closely the discrepancy between the numerical results for 
the near-tip strains and the corresponding term of the HRR solution (non-hardening 
limit), which was noted in Section 4. For this purpose, a singular finite element analysis 
similar to the plane strain work of RICE and TRAC’EY (1973) was carried out under 
Mode I plane stress, small-scale yielding conditions. A ring of focused isosceles 
triangular-shaped elements was used near the crack tip in this computation. This mesh 
design is different from the fine mesh employed in the earlier analysis (Fig. l(b)). 
Thus, the issue of sensitivity of the numerical results presented earlier in Section 4 to 
the near-tip mesh design was also examined through this section of our work. 

The near-tip elements that were employed here provide a capability for non-unique- 
ness of displacement at the crack tip (LEVY et ul., 1971 ; RICE and TRACEY, 1973), 
which is the fundamental feature of the I/r plastic strain singularity within centred 
fan regions (Section 3). This was achieved by treating the triangular elements at the 
crack tip as degenerate isosceles trapezoids that have a total of four nodes (one at 
each vertex) with two nodes coinciding at the crack tip (Fig. 18). The coincident nodes 
at the crack tip were constrained to move as a single point till the load level at which 
incipient yielding was detected in one of the near-tip elements. A special shape function 
(RICE and TRACEY, 1973) was used up to this load level to provide the crack tip 
elements the capability to model the I/d ‘1. dominant elastic strain singularity. Sub- 
sequently, the coincident nodes were allowed to move independently and the crack 
tip elements modelled the 1,lr plastic strain singularity. 

The mapping of a four-noded rectangle to a triangle (Fig. 18) can be described by 

x = x’ 
(I --r”)(I-tV) + x, (I -<)(I --r7) + xi (I +<)(I -I?) + x,(1 +O(I fvl) 

4 4 4 4 ’ 

(6.1) 

with the constraint xi = x’. Here (<. 17) is the natural coordinate system for the element 
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FIG. 16. Angular distribution of (CT,, +cT>?) for different distances from the tip. The solid line is the 
distribution given by the K, field. 
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FIG. 17. Relationship between caustic diameter and the J integral as obtained Cram the m.m~erically 
simulated caustics. 

and (sI,.u2) is a global coordinate system centered at the crack tip. The inverse 
mapping of (r, y) in terms of a local Cartesian coordinate system (s, t), and a local 
polar coordinate system (I.. I/I) for the element is given by (Fig. I8), 

(6.2) 

The elastic singularity element has the shape function (RICE and TKACEY, 1973), 

Here u” represents the unique displacement of the crack tip nodes i andj. The above 
element correctly models the J’i. variation in the leading term for the displacements 
of the linear elastic solution. Also, displ~~elnellt ~ompatibi~jty is satisfied along the 
edges i-l andi A (q = i I) with the adjacent singular elements and along the edge I- 
k (’ = I) with the conventional four-noded &parametric element that is joined there. 

As was first pointed out by LEVY ef 01. (1971), the mapping of any four-noded 
isoparametric element to a triangle leads to a I/r strain variation provided that 
the coincident nodes are permitted to have different displacements. The crack tip 
displacement for such an element is given by (Fig. l8), 

u(-- I,,?) = 
(d + u’ ) + yI y - u’ ) 

.._ 

2  

2 
(6.4) 

SFollowing the notation of (3.9) and neglecting the elastic strains that are bounded. it 
can be shown from (6.4) that 
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where u,~ and U, are the displacement components in the local (s, f) Cartesian coordinate 
system and $ is the angle measured in the local (r, $) polar coordinate system (Fig. 
18) for the element. It should be noted that the right-hand side of (6.5) is a first-order 
finite difference approximation to $&(+) and $F+($). Also, it should be noted that if 
the two coincident nodes displace as a single point, so that u’ = uiY then this element 
behaves as an ordinary constant strain triangle. 

The mesh employed in this analysis was similar to the one used by LEVY uf ul. 
(1971). Only the upper hatf-plane was considered because of symmetry. The active 
mesh consisted of 20 rings with radii of L, (1.S)’ L, (2.0)’ L, . . , (9.5)’ L, (10.0)’ L 
and 115 L. These were divided by 25 rays at equal angular intervals of 7.5’, giving a 
total of 52.5 nodes (including 25 coincident crack tip nodes) and 480 elements in the 
active mesh. The region outside consisted of 14 rings with 24 elements in each ring 
and always remained elastic. Static condensation was employed in this region as 
described in Section 2. The radius of the outermost boundary S on which the dis- 
placement boundary condition (2.1) was specified was 645 L. The loading process 
was stopped when the maximum plastic zone extent was about $3 of the radius of the 
outermost boundary S, so that the small-scale yielding condition was preserved. The 
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FIG. 1Y. Radial distribution of stresses ;thcad nf crack tip xt incqxent yieidin g. Solid line is the singular 
elastic solution. 

symmetry condition (2.2) on the 0 = 0 ray and the traction-free condition on the 
B = n ray were enforced. 

Every near-tip element was composed of three subelements (RICE and TRACEY, 

1973), each extending to one-third of the height of the element. A nine-point numerical 
integration scheme was employed to integrate the element stiffness matrix, with 
integration stations at (5,~ = - ;, 0, -2) and weighting factors of 4 of the area of the 
element. For the isoparametric elements outside the innermost ring, the two-by-two 
Gauss quadrature scheme was used. The solution strategy was the same as that 
described in Section 2 with the additional modifications mentioned earlier in this 
section. 

Results und discussion 

It can be shown by substituting the dominant term of the elastic solution for the 
stresses into the plane stress Von Mises yield condition that incipient yielding 
will occur at an angle of arccos (4) % 70.5’. Also, the value of the load parameter, 

Ki‘l(cJ,,y ‘& fiGi.), calculated from the analytical solution is 0.866 for initial yielding at 
a radius of r,. incipient yielding occurred in the present finite element compu- 
tation in the subelement between 67.5’ and 75 ’ with a mean angle of 7 I .25”. The 
value Of Ki’/(5oy /2nu,.) was 0.83, which is in good agreement with the anaiytical 

prediction. 
The radial distribution of stresses along the ray ahead of the crack tip at incipient 

yield is shown in Fig. 19 in the nondimensional form, o/r0 versus r/(K,/cr,I)‘. The 
stresses given by the finite element solution are in excellent agreement with the 
dominant elastic solution, which is shown by the solid line in the figure. Also, the 
angular distribution of stresses within the crack tip elements compared closely with 
the analytical solution. 

The plastic zone at the end of the stationary load history is shown in nondimensional 
coordinates in Fig. 20. This compares very well, in overall features, with the plastic 
zone obtained in the earlier analysis (Fi g. 3f. The maximum plastic zone extent is 
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FIG. 20. Plastic zone for the perfectly plastic case obtained from the singular finite element analysis 

about rP = O.~~(&/CJ,)~ ahead of the crack tip. In the subelements nearest to the crack 
tip, yielding spread only from f3 = 0 to 75, which is in approximate agreement with 
the centered fan region of Fig. 2. 

The radial stress distribution ahead of the crack tip within the plastic zone also 
appeared similar to the variation reported earlier in Fig. 6. In the subelement nearest 
to the crack tip that occupies the angular range from 8 = 0 to 7.5, the stresses G,, 
and gZZ reached the constant values 0.99 z0 and 1.999 rO, respectively, which agrees 
very well with the analytical asymptotic limit (3.7). Once again, a strong radial 
variation in the C, , stress component was observed along the 19 = 0 ray, with a value 
at the elastic-plastic boundary of 1.40 T”. 

The angular distribution of the normalized stress component aHH/ro, within the 
subelements nearest to the tip, is shown in Fig. 21 along with the slip line solution 
(solid line) of HUTCHINSON (1968b). The finite element solution shows good agreement 
with the analytical distribution in the angular range 0 < 0 < 80”, which corresponds 
to the centered fan region in Fig. 2. This was typical of the other two stress components 
or0 and err as well, with crrr showing more deviation from the analytical solution as 
0 + 80”. This result is consistent with the fact that the two constant stress sectors in 
Fig. 2 were not detected by the finite element solution. Also, the numerical result 
suggests that within the fan, the focusing of the slip lines may occur very close to the 
crack tip in the angular range 65” < H < 80”. 

The normalized crack tip opening displacement 6,/(J/(r,), where J is the remotely 
applied value of the J integral, was calculated based on the crack tip node lying on 
the 8 = 7c ray. It increased from zero at incipient yield (K, = K,“) to a constant value 
of 0.84 at K, z 3.5 K;. This value did not change during the subsequent part of the 
loading process. The variation in G,/(J/a,,) during the initial phase of the loading 
process occurred since the plastic zone was not fully developed. It should be noted 
that this quantity is in excellent agreement with the value reported in Table 1, which 
was calculated on the basis of the earlier analysis. 

The displacements of the crack tip nodes were substituted into equation (6.5), with 
$ = 0 (corresponding to the mean angle of the near-tip element), to determine the 
angular factors i&,(O) and t$,(N) of the dominant l/r strain singularity (3.9). In order 
to compare with the dimensionless angular factors C$(B, n) given by the HRR analysis 
(equation (3.1)) for large IZ, the functions &s(O) and ,C$(O) obtained from the present 
finite element calculation for the perfectly plastic case were normalized as follows, 
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FIG. 21. Angular distribution of a,,,,/s,, within sub-elements closest to the crack tip at the end of the loading 
process. Solid line is the analytical. asymptotic solution of HUTCHINSON (1968b). 

(6.6) 

Here 1, is taken as 2.6 corresponding to n -+ ro in the HRR solution. The functions 
thus obtained are shown along with the HRR distribution For n = 25 (which is given 
by SHIH (I 973)) in Fig. 22. It can be seen that the two angular functions are completely 
different. It is interesting ta note that the numerical solution for the perfectly plastic 
case under small-scale yielding conditions gives vanishingly small values for the 
angular factors of the dominant I/r strain singularity for 0 > 45’,, dthough the slip 
line solution of Fig. 2 shows a centered fnn extending from B = 0 to about 80”. 

It is found that the angular factors S& and &, obtained from the numerical sohttion, 
satisfy almost exactly the following relation, 

which is analogous to equation (3. I 1 J7 as applied to the accumulated near-tip plastic 
strains. Also, as was observed from the near-tip strain distribution (Fig. 9) of the 
earlier analysis, it is again found from the present computation (Fig, 22) that 
&(B = 0) for the perfectly plastic case is about 3.3 times the corresponding value 
given by the HRR analysis for 3arge n. 

The near-tip value of the I integral was calculated by substituting ~~~~(~~ and 
f&(S) obtained above into equation (3. IS). The integral in (3.15) was estimated 
numerically, and it was found that J,i, is about 0.95 times the remotely applied J 
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FIG. 22. The angular factors of the I/r plastic strain singularity obtained from the numerical solution on 
the basis of the non-unique crack tip displacement. Solid line is the variation given by the HRR solution 

for n = 25 (SHIH, 1973). 

value. This is somewhat different from the development in plane strain where TRACEY 

(1976) reported Jtip to be about 0.8 times the applied J value. But later, SHIH (1981) 

found JtlP to be 0.96 times the applied J from his finite element calculation under plane 
strain, small-scale yielding conditions for the perfectly plastic case based on a different 
type of singular element. 

If the near-tip Jcomputed above from the present analysis is used to normalize the 
crack tip displacement 6,, it is found that 6, = 0.88(J,i,/o,). Hence, it is concluded 
that G,/(J/o”) for the perfectly plastic case under plane stress, small-scale yielding 
conditions could vary from 0.84 to 0.88. 

In closing, it is observed that all the results given above by the present accurate 
numerical computation are in good agreement, in every respect, with the earlier 
analysis, which employed a nonfocusing mesh with nonsingular elements near the 
crack tip. The earlier analysis relied purely on the fineness of the mesh and a large 
plastic zone to the smallest element size ratio to provide sufficient resolution near the 
crack tip. 
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APPENDIX 

Newton- Raphson method,for equilibrium iteration 

It was observed in Section 2 that an iterative Newton-Raphson method was used in the 
solution of the incremental equilibrium equations (2.11). This procedure is summarized below 
for the kth equilibrium iteration of the (t+At)th time step. 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

The externally applied load is increased and F(t + At) is calculated. 
The tangent stiffness matrix K+-‘(t+At) and the vector Pkm ‘(t+At) = J,BT&‘(t+At)dA 
are calculated. For the first iteration of the time step (k = l), the above vector is com- 
puted from the converged solution at the end of the previous time step as P’(t+At) = 
J,B’a(t) dA. 
The following matrix equation is solved by Gauss elimination : 

K’;-‘AU” = F(t+At)-P” -’ = ARk. 

The nodal displacements and element strains are updated as follows, 

Uk(t+At) = U~~‘(t+At)+AU’ 

d(t+At) = BU’:(t+At). 

For the first iteration of the time step (k = l), 

U’(t+At) = U(t)+AU’. 

In order to prevent fictitious (numerical) elastic unloading of elements in some parts of the 
plastic zone during the subsequent iterations (k > 1) of the time step, a path independent 
scheme is used to update element stresses. The stresses are estimated by integrating from 
the values at the end of the previous accepted equilibrium configuration to the current 
iteration of this time step by using the cumulative strains as follows (BATHE, 1982), 

s 

c”(r+Ar) 

a”(t+At) = a(t) + Dda 
S(I) 

An explicit method was employed to evaluate the integral in the above equation. 
The Euclidean norm of the out-of-balance force vector AR’ (see Step (3)) and the internal 
energy increment are checked for convergence by comparing with the corresponding values 
at the start of the iteration process as (BATHE and CIMENTO, 1980), 

lIARi II d 6,llAR’ II, 

AU“ *ARk Q 6,AU’ *AR’, 

where 6, and S, are small, preset tolerances. 
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23. Stress computation in the finite element scheme based on an explicit integration of the incremental 
constitutivc law. 

Tf convergence is nrrr ~I~~~~J~~~~. controt is returned CO Step (2) to perform the next iteration. 
If convergence is cr&krd control is returned to Step (I) to perform the next time step. 

After solving the finite clement equilibrium cqustions for rhc nodal displaccmcnt 
increments AU, the strain increment AE is obtained as 

AE = BALI, 

where B is the strain-displacement matrix. 
An elastic &mate Aa” for the stress increment is computed as 

da” = CA& 

A trial stress state 6’ = rr”+Aa’ is caicukted from the stress state 8 at the beginning of 
the iteration. Here oil is taken to bc inside the yield surface (Fi_e. 13) for the sake of 
definitcncss. 
if 45’) -(d”)’ g 0. where 6” is ~hc value of ci at the beginning of the iteration. then the 
elastic behaviour assumption holds and the remaining steps in this method arc omit& 
Otherwise, the yield surface has been crossed during the trial stress incrementation (Fig. 
23). 
The contact Wcss state u” is obtained as 

where 0 < y < I und F(o’ f--(6”)’ = 0. This condition Ihr the Von Mises yield funclion 
teads to a quadratic equation in q. It should bc observed that the path from 8 to 6” 
constitutes fully elastic mtttcrial rcsponsc. 
A stress state c7’ is obtaincci as 
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In this equation, F, is taken as the normal to the yield surface at the stress state 6”. Also, 
Ai is evaluated correspanding to the stress state cc. 

(7) The yield surface is updated as 

CT z O’O f H($‘)AF~~ 
where 

which can be obtained from (2.4) for hardening sofids and is set equal to zero for perfect 
plasticity. 

(8) Due to the finite nature of the time step, the stress state CT’ obtained in Step (6) will not 
(in general) lie on the updated yield surface. tr7- is then simply scaled as follows, 

The path from 8 to CC constitutes elastic-plastic material response. In order to minimize 
the error due to the use of finite increments, the excess stress 8-&’ is divided into m 
subincrements. and Steps (6) to (8) are carried out m times with the subincremen~s. 


